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We study the dynamical response of a two-dimensional Ising model subject to a square-wave oscillating
external field. In contrast to earlier studies, the system evolves under a so-called soft Glauber dynamic
�Rikvold and Kolesik, J. Phys. A 35, L117 �2002��, for which both nucleation and interface propagation are
slower and the interfaces smoother than for the standard Glauber dynamic. We choose the temperature and
magnitude of the external field such that the metastable decay of the system following field reversal occurs
through nucleation and growth of many droplets of the stable phase, i.e., the multidroplet regime. Using kinetic
Monte Carlo simulations, we find that the system undergoes a nonequilibrium phase transition, in which the
symmetry-broken dynamic phase corresponds to an asymmetric stationary limit cycle for the time-dependent
magnetization. The critical point is located where the half period of the external field is approximately equal to
the metastable lifetime of the system. We employ finite-size scaling analysis to investigate the characteristics
of this dynamical phase transition. The critical exponents and the fixed-point value of the fourth-order cumu-
lant are found to be consistent with the universality class of the two-dimensional equilibrium Ising model. This
universality class has previously been established for the same nonequilibrium model evolving under the
standard Glauber dynamic, as well as in a different nonequilibrium model of CO oxidation. The results
reported in the present paper support the hypothesis that this far-from-equilibrium phase transition is universal
with respect to the choice of the stochastic dynamics.
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I. INTRODUCTION

Kinetic Ising or lattice-gas models with stochastic dynam-
ics have been successfully applied to study a number of dy-
namical physical phenomena, including metastable decay
�1–6�, hysteretic responses �7–9�, and magnetization switch-
ing in nanoscale ferromagnets �10,11�. Among the dynamic
phenomena in such models that have attracted particular at-
tention in recent years, is the dynamic phase transition �DPT�
observed in systems with Ising-like symmetry that are driven
far from equilibrium by an oscillatory applied force �typi-
cally a magnetic field or �electro�chemical potential�. This
phenomenon was first observed in kinetic simulations of a
mean-field model �12,13� and later studied intensively by
mean-field �14–17�, Monte Carlo �7–9,16–20�, and analyti-
cal �21–24� methods. In this transition, the dynamic order
parameter, which is the cycle-averaged magnetization, van-
ishes in a singular fashion at a critical value of the period of
the applied field. Recently, strong experimental evidence has
emerged that this nonequilibrium phase transition is observ-
able in magnetic thin-film systems �25�, and an analogous
phenomenon has been observed in simulations of a model of
the heterogeneous catalytic oxidation of CO �26,27�.

Perhaps the most fascinating aspect of this far-from-
equilibrium phase transition is that it belongs to the same

universality class as the corresponding equilibrium Ising
model. This result is predicted from symmetry arguments
�28,29� and has been confirmed by exhaustive kinetic Monte
Carlo simulations �7–9,19� and analytical results �21�. Very
recently, the field conjugate to the dynamic order parameter
was identified as the cycle-averaged applied field, and a
fluctuation-dissipation relation valid near the nonequilibrium
critical point was numerically established �20�.

The physics of equilibrium phase transitions is well un-
derstood, and it is well established that structures arising
from different dynamics that obey detailed balance and re-
spect the same conservation laws exhibit universal
asymptotic large-scale features. However, the mechanisms
behind nonequilibrium phase transitions are not very well
known, and the dependence on the specific dynamics is still
an open question. Except for the study of the model of CO
oxidation �26,27�, all previous kinetic Monte Carlo simula-
tions in which this DPT was observed were performed with
the standard stochastic Glauber �30� or Metropolis �31� dy-
namics. All these studies, including the study of CO oxida-
tion, which used very different dynamics, found critical ex-
ponent ratios consistent with the equilibrium Ising values,
� /�=7 /4 and � /�=1 /8. This gives a reasonable indication
that this DPT is universal with respect to details of the model
and the stochastic dynamics. However, a more direct test of
just the universality with respect to the dynamics would be to
use a significantly different stochastic dynamics for the two-
dimensional kinetic Ising model. Such a test is the subject of
the present paper.
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All stochastic dynamics that respect detailed balance
eventually lead to thermodynamic equilibrium �32�, and all
dynamics that obey the same conservation laws also give the
same long-time dynamics �e.g., a t1/2 dependence of the char-
acteristic length for phase ordering with a nonconserved or-
der parameter and a t1/3 dependence for phase separation
with a conserved order parameter �33��. However, it has re-
cently been demonstrated that different stochastic dynamics
give quantitatively dramatically different results for low-
temperature nucleation �34,35�, as well as for the nanostruc-
ture and mobility of field-driven interfaces �36–40�. The dif-
ferences are particularly striking between dynamics known
as “hard,” in which the effects of the configurational and
field-related �“Zeeman”� energy contributions in the transi-
tion rate do not factorize, and “soft,” for which such factor-
ization is possible �34,36,41�. The class of hard dynamics
includes the standard Glauber and Metropolis dynamics,
while the soft dynamics here will be represented by the “soft
Glauber dynamics” introduced in Ref. �36�, whose transition
rate is given in Sec. II. Briefly, the nanostructure of field-
driven hard interfaces is characterized by a local interface
width and mobility that increase dramatically with the
strength of the applied field, while soft interfaces remain
relatively smooth and slow moving, independent of the field
�36�. Similarly, low-temperature nucleation under hard dy-
namics becomes very fast for strong fields, while under soft
dynamics it remains thermally activated and thus very slow,
even for very strong fields �34�. While the soft Glauber dy-
namics is probably not particularly relevant to any specific
physical system, it is ideally suited for comparison with the
standard, hard Glauber dynamic in investigating universal
properties of the DPT.

The rest of this paper is organized as follows. The kinetic
Ising model and its dynamics are introduced in Sec. II, and
the numerical results and fininite-size scaling analysis are
presented in Sec. III. A summary and conclusions are given
in Sec. IV.

II. MODEL AND DYNAMICS

For this study we choose a kinetic, nearest-neighbor, Ising
ferromagnet on a square lattice with periodic boundary con-
ditions. The Hamiltonian is given by

H = − J�
�ij�

sisj − H�t��
i

si, �1�

where si= �1 is the state of the spin at the site i, J�0 is the
ferromagnetic interaction, ��ij� runs over all nearest-neighbor
pairs, �i runs over all L2 lattice sites, and H�t� is an oscillat-
ing, spatially uniform applied field. The magnetization per
site,

m�t� =
1

L2�
i=1

L2

si�t� , �2�

is the density conjugate to H�t�. The temperature T �in this
paper given in units such that Boltzmann’s constant equals
unity� is fixed below its critical value �kBTc=J / ln�1+�2��, so
that, when there is no external field, the system has two

degenerate equilibrium states with magnetizations of equal
magnitude and opposite direction. When an external field is
applied the degeneracy is lifted, and the equilibrium state is
the one with magnetization in the same direction as the field.
If the external field is not too strong, the state with opposite
magnetization direction is metastable and eventually decays
toward equilibrium �1�. This model is equivalent to a lattice-
gas model with local occupation variables ci= �si+1� /2
� 	0,1
 and �electro�chemical potential ��H �for further
details, see Ref. �37��.

The system evolves under the soft Glauber single-spin-
flip �nonconservative� stochastic dynamics with updates at
randomly chosen sites. In the lattice-gas representation, this
corresponds to adsorption and desorption without lateral dif-
fusion. The time unit is one Monte Carlo step per spin
�MCSS�. When the system is in contact with a heat bath at a
temperature T, each proposed spin flip is accepted with prob-
ability

WSG =
1

1 + exp���EJ�
1

1 + exp���EH�
. �3�

Here �=1 /T, �EJ is the energy change corresponding to the
interaction term, and �EH is the energy change correspond-
ing to the field term in the Hamiltonian Eq. �1�. This transi-
tion probability is to be contrasted with those of the standard,
hard Glauber dynamics,

WHG =
1

1 + exp���E�
, �4�

and the Metropolis dynamics,

WM = Min�1,exp�− ��E�� , �5�

where �E=�EJ+�EH is the total energy change that would
result from a transition.

The dynamical order parameter is the time-averaged mag-
netization over the kth cycle of the oscillating field �12�,

Qk =
1

2t1/2
�

�k−1�2t1/2

k2t1/2

dt m�t� , �6�

where t1/2 is the half period of the applied field. The cycle is
chosen such that it starts when H�t� changes sign. We also
measured the normalized cycle-averaged internal energy,

E

J
= −

1

2t1/2
�

�k−1�2t1/2

k2t1/2

dt
1

L2�
�ij�

si�t�sj�t� . �7�

As previous studies indicate �7–9�, the DPT essentially
depends on the competition between two time scales: the
average lifetime of the metastable phase, �	�T ,H0��, and the
half period of the applied field, t1/2. The metastable lifetime
�	� is defined as the average time it takes the system to leave
one of its two degenerate zero-field equilibrium states when
a field of magnitude H0 opposite to the initial magnetization
is applied. In practice the metastable lifetime is measured as
the first-passage time to zero magnetization.

It is well known that metastable Ising models decay by
different mechanisms depending on the magnitude of the ap-
plied field H0, the system size L, and the temperature T.
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Detailed discussions of these different decay regimes are
found in Ref. �1�. More recently it has also been shown that,
contrary to some common beliefs, there is also a strong de-
pendence on the specific stochastic dynamics �34,35�. For
the purpose of this study the temperature, the system sizes,
and H0 are chosen such that the metastable phase decays by
random homogeneous nucleation of many critical droplets of
the stable phase, which grow and coalesce, the so-called
multidroplet �MD� regime. The metastable lifetime in the
MD regime is independent of the system size �1�.

III. MONTE CARLO SIMULATIONS

The numerical simulations reported in this work are per-
formed on square lattices with L between 64 and 256 at T
=0.8Tc. The system is subjected to a square-wave field H�t�
of amplitude H0=0.3J. The metastable lifetime was mea-
sured to be 	=145�1 units of MCSS, almost twice as long
as for the kinetic Ising model evolving according to the stan-
dard �hard� Glauber dynamics under the same conditions
�7,8,20�. This is consistent with earlier observations of slow

nucleation �34� and interface growth �38� with this dynamics.
The system was initialized with all the spins up, and the

square-wave external field started in the half period in which
H=−H0. After the system relaxed, the magnetization and en-
ergy reached a limit cycle �except for thermal fluctuations�,
and all the period-averaged quantities became stationary sto-
chastic processes. We discarded the first 2000 periods of the
time series to exclude transients from these stationary-state
averages.

The time evolution of the magnetization is shown in Fig.
1. For slowly varying fields �Fig. 1�a��, the magnetization
follows the field, switching every half period. In this region,
Q�0. For rapidly varying fields �Fig. 1�b��, the magnetiza-
tion does not have time to switch during a single half period
and remains nearly constant for many successive field cycles.
As a result, the probability distribution of Q becomes bimo-
dal with two sharp peaks near the system’s spontaneous equi-
librium magnetization, �msp�T�, corresponding to the bro-
ken symmetry of the hysteresis loop. The transition between
these two regimes is characterized by large fluctuations in Q.
This behavior of the time series Qk, shown in Fig. 2, is a
clear indication of the existence of a dynamical phase tran-
sition between a disordered dynamic phase �the region where
Q�0�, and an ordered dynamic phase �where Q�0�. Notice
that the transition occurs at a critical value 
c= t1/2

c /	 that is
very close to unity, the value at which the half period of the
external field is equal to the metastable lifetime of the sys-
tem. To further explore the nature of the DPT, we perform a
finite-size scaling analysis of the simulation data.

Finite-size scaling

Previous studies indicate that, although scaling laws and
finite-size scaling are tools designed for equilibrium systems
with a well-known Hamiltonian, they can be successfully
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FIG. 1. �Color online� Time series of the magnetization �solid
curves� in the presence of a square-wave external field �dashed
lines�, for two values of the half period t1/2. �a� t1/2=400 in units of
MCSS, corresponding to a dynamically disordered phase. �b� t1/2
=40 in units of MCSS, corresponding to a dynamically ordered
phase. The data were obtained for a system of size L=128 at T
=0.8Tc and field amplitude H0=0.3J.
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FIG. 2. �Color online� Time series of the order parameter Q for
a system of size L=128 at T=0.8Tc and H0=0.3J. The horizontal
trace near Q= +1 corresponds to a half period of the field, t1/2
=40 in units of MCSS, well into the dynamically ordered phase �see
Fig. 1�b��. The strongly fluctuating trace corresponds to t1/2=145 in
units of MCSS, very close to the DPT. The horizontal trace near
Q=0 corresponds to t1/2=400 in units of MCSS, well into the dy-
namically disordered phase �see Fig. 1�a��.
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applied to far-from-equilibrium systems like the one we are
analyzing here �7–9,20,26�.

Since for finite systems in the dynamically ordered phase
the probability distribution of the order parameter is bimodal,
in order to capture symmetry breaking, the order parameter is

better defined as the average norm of Q, i.e., �Q�. To char-
acterize and quantify this transition by using finite-size scal-
ing we must define quantities analogous to the susceptibility
with respect to the field conjugate to the order parameter in
equilibrium systems. The scaled variance of the dynamic or-
der parameter,

�L
Q = L2��Q2�L − �Q�L

2� , �8�

has long been used as a proxy for the nonequilibrium sus-
ceptibility. A fluctuation-dissipation relation was recently
demonstrated, which justifies this practice by connecting �L

Q

to the susceptibility with respect to an applied bias field for a
two-dimensional kinetic Ising model evolving under the
standard Glauber dynamics �20�.

In Fig. 3 we present the finite-size behavior of the order
parameter and its fluctuations. Figure 3�a� shows that this
dynamic order parameter goes from unity to zero as t1/2 in-
creases, showing a sharp change around t1/2

c , characterized by
the peak in �L

Q shown in Fig. 3�b�. The absence of finite-size
effects below the critical point is the signature of the exis-
tence of a divergent length scale. The height and the location
of the maximum in �L

Q change with L.
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FIG. 3. �Color online� Dependence on the half period t1/2 of the
order parameter �Q� �a�, and of its scaled variance �L

Q �b�, shown
for various system sizes L. All the results correspond to T=0.8Tc

and H0=0.3J.
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FIG. 4. �Color online� Normalized autocorrelation function for
the order parameter Q for t1/2=145 in units of MCSS at T=0.8Tc

and H0=0.3J, shown for different values of L.
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FIG. 5. �Color online� Dependence on the half period t1/2 of the
period-averaged internal energy �E� �a�, and its scaled variance �L

E

�b� for various system sizes L. All the results correspond to T
=0.8Tc and H0=0.3J.
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In Fig. 4 we show the normalized time-autocorrelation
function of the order parameter, defined as

CL
Q�p� =

�Q�i�Q�i + p�� − �Q�i��2

�Q�i�2� − �Q�i��2 . �9�

The increasing correlation times with increasing system sizes
are evidence of the critical slowing down of the system, and
provide further support for the existence of a DPT.

We also measured the period-averaged internal energy,
Eq. �7�, and its scaled variance

�L
E = L2��E2�L − �E�L

2� . �10�

Both quantities are shown in Fig. 5. Again, in the absence of
a fluctuation-dissipation relation, we use the scaled variance
as a proxy for the analog of the equilibrium heat capacity.
The correlation time was used to estimate the proper sam-
pling interval for estimating the fluctuation measures and
their error bars as described in Ref. �32�.

It is very difficult to locate with precision the maxima of
�L

Q and �L
E for the individual finite system sizes. A more

accurate estimation of the critical point at which the transi-
tion occurs in an infinite system can be obtained from the
fourth-order cumulant intersection method. In Fig. 6 we plot
the fourth-order cumulant UL defined as �32�
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FIG. 6. �Color online� �a� Dependence of the fourth-order cu-
mulant UL on the half period t1/2, shown for various system sizes L.
�b� Enlargement of the region around the cumulant crossing. The
horizontal and vertical dashed lines indicate the fixed point value
U*�0.606 and the critical half period, t1/2

c =145 in units of MCSS,
respectively. All the results correspond to T=0.8Tc and H0=0.3J.
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FIG. 7. �Color online� Critical exponent estimates from the scal-
ing relations. The symbols represent the MC data, the straight lines
are weighted least-squares fits. �a� Calculating � /� from Eq. �12�.
�b� Calculating � /� from Eq. �13�. �c� The logarithmic divergence
of the period-averaged energy fluctuations, based on Eq. �14�. From
data at t1/2

c =145 in units of MCSS, circles; at the peaks, squares.
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UL = 1 −
�Q4�L

3�Q2�L
2 �11�

as a function of t1/2 for several system sizes. Our estimate is
t1/2
c = �145�1� units of MCSS, with a fixed-point value U*

=0.606�0.004 for the cumulant �Fig. 6�b��. The latter is
consistent with the universal value for the two-dimensional
equilibrium Ising model, U*=0.610 690 1�5� �42�.

Finite-size scaling theory for equilibrium systems �43,44�
predicts the following scaling forms at the critical point:

�Q�L � L−�/�, �12�

�L
Q � L�/�, �13�

which are also applicable to the far-from-equilibrium DPT
�7–9,20�. If the specific-heat critical exponent �=0, as it is
for the equilibrium Ising universality class, then we also ex-
pect the logarithmic divergence

�L
E � A + B ln�L� . �14�

These relations enable us to estimate the critical exponent
ratios � /� and � /� and verify the logarithmic divergence in
the period-averaged internal energy fluctuations. In Fig. 7 we
present the results obtained by plotting the logarithm of
�Q�L �Fig. 7�a��, the logarithm of �L

Q �Fig. 7�b��, and �L
E

�Fig. 7�c��, in terms of the logarithm of L at t1/2
c . We also plot

the peak of the fluctuations, �L
Q �peak� �Fig. 7�b��, and �L

E

�peak� �Fig. 7�c��, since they asymptotically should follow
the same scaling laws. After fitting the data with a weighted,
linear least-squares algorithm, our estimates for the critical
exponents are � /�=1.44�0.06, � /�=1.77�0.04 �from the
data at t1/2

c �; the data from �L
Q �peak� give � /�=1.79�0.02

which agree within statistical error. Also, the straight line in
Fig. 7�c� gives evidence of the logarithmic divergence of �L

E

at the critical point. These results, together with our estimate
for U*, give strong support to the hypothesis that the DPT
observed is in the same universality class as the equilibrium
two-dimensional Ising model.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the dynamical response of a
two-dimensional Ising model exposed to a square-wave os-
cillating external field. The system evolves under the so-
called soft Glauber dynamics. In previous works it was es-
tablished that, in the field and temperature regions when the
metastable decay occurs via a multidroplet mechanism, this
system evolving under a standard �hard� Glauber dynamics
undergoes a continuous phase transition, with critical expo-

nent ratios consistent with the equilibrium Ising values. The
aim of the present study was to explore the universality of
this far-from-equilibrium DPT with respect to the dynamics
chosen to evolve the system.

Our numerical results clearly indicate the existence of a
DPT in the multidroplet regime. The transition depends on
the competition between two time scales: the half period of
the applied field and the metastable lifetime of the system.
We found that the metastable lifetime of the system evolving
under the soft Glauber dynamics is roughly twice that of the
same system evolving under the standard Glauber dynamics.
However, in both cases the transition occurs at a critical
point where both times are of the same order of magnitude.
If the half period of the applied field increases much beyond
the metastable lifetime, the system is in a dynamically disor-
dered phase characterized by a vanishing dynamic order pa-
rameter. A study of the autocorrelation function of the order
parameter at the critical point provides evidence of critical
slowing down, showing increasing correlation times with in-
creasing system sizes.

We applied the machinery of finite-size scaling, originally
developed for equilibrium phase transitions, to estimate the
critical point and the critical exponent ratios � /� and � /� for
system sizes between 64 and 256 at T=0.8Tc and H0=0.3J.
Our estimates are � /��1.44�0.06 and � /��1.77�0.04.
These values are close to those of the two-dimensional equi-
librium Ising model: � /�=1 /8=0.125, � /�=7 /4=1.75. Fur-
thermore, our data strongly indicate a slow logarithmic di-
vergence with L of the period-averaged energy fluctuations,
consistent with the equilibrium Ising exponent �=0. The
fixed-point value of the fourth-order cumulant, U*, is also
close to its expected universal Ising value, near 0.611.

This study provides further evidence of the universality
class of the dynamic phase transition in kinetic Ising systems
driven by an oscillating field, extending its domain to sys-
tems that evolve under different stochastic dynamics that
lead to interfaces with significantly different structures on the
nanoscale.
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